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Abstract
The shell structure of matter is a unifying 
principle, from the fixed orbits of the planets, 
to the gyrating electrons in an atom, and the 
dance of the quarks in protons and neutrons. It 
puts Mendeleev’s Periodic System, proposed 150 
years ago, into the historical perspective of two 
other great taxonomies: the earlier planetary law 
of Titius-Bode, and the later quark hypothesis by 
Gell-Mann. In the case of the quarks, use was 
made of the theory of symmetry groups, which 
was created around 1830 in a flash of genius by 
Évariste Galois. Its subsequent application to the 
symmetry of continua is due to Sophus Lie.  In this

respect the classification of hadronic matter by 
group theory shows a more advanced and mature 
form of theory, as compared to the quantum 
mechanical treatment of the Periodic System. In 
1969, at the centennial of Mendeleev’s discovery, 
Löwdin noted how remarkable it was that the 
periodicity of the table had not been derived from 
first principles. This challenge is calling for a 
comprehensive theory of atomic shell structure. 
The present contribution relates the search of the 
deep symmetries at the origin of the table. This 
leads to an unexpected confrontation with the 
algebras of Sophus Lie.

1. A portrait gallery

To bring order to chaos is one of the key 
elements of scientific discoveries. It starts 
by proposing a taxonomy. Such was the 
classification of the chemical elements in a 
periodic system by Mendeleev in 1869. The year 
2019 was proclaimed as the international year 
of the periodic table to commemorate the 150th 
anniversary of this exceptional achievement. 
This is a welcome occasion to put Mendeleev’s 
contribution in a broader perspective and 
compare it to similar classification rules in natural 
science [1]. In our portrait gallery of great ‘rule 
seekers’ (Figure 1) we place Mendeleev in the 
company of predecessors Titius and Bode, who 
discovered the law of the planetary distances 
approximately a century earlier, and of worthy 
successor Murray Gell-Mann, who came up 
with the classification of hadronic matter almost 
a century later. However, before the start of 
our guided tour, it is well to remind that while 
these individual scientists were credited with 
these discoveries, history shows little mercy to 
their contemporaries who often made equally 
valuable contributions. 
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1.1. Titius-Bode

The planets describe their periodic Kepler 
orbits around the sun. These elliptic orbits are 
characterized by a major and minor axis, and an 
orientation in space which involves the orbital 
plane and the direction of the major axis. In 
principle Newton’s gravitational law does not 
put limitations to the orbit parameters. In reality 
though, all orbits are more or less coplanar, and 
eccentricities are small. Most surprisingly the 
planets perform their journeys at regular distances 
from the sun, which are (approximately) described 
by integer numbers. This is the famous law of 
Titius-Bode. In a modern version [2] this law 
states that the length of the semi-major axis of the 
planetary orbits (in astronomical units) forms a 
geometric progression, which can be expressed as:

r
n 
= r

0 
Kn  (1)

where r
n
 is the orbital distance of the nth planet, r

0
 

is the normalizing distance (0.235 astronomical 
units for the distance of Mercurius), and K=1.7 
for our solar system (Figure 2).

Figure 2. Geometric series of the planetary distances, from 
Mercurius to Pluto [2]. The astronomical unit (A.U.) corresponds to 
the Earth-Sun distance.

Figure 1. Three centuries of great classifiers of planets, 
atoms, and subatomic particles.

Titius (1729-1796

Bode (1747-1826)

Mendeleev (1834-1907)
Portrait by Ilya Repin

1766 1869

Gell-Mann (1929- 2019)

1963
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This law does not reflect a mysterious quantum 
condition, but goes back to the formation of the 
planets in the protoplanetary disk, where they 
ended up at regular intervals. It undoubtedly 
gives the whole planetary system some reassuring 
stability, so that we can observe our neighbours 
Venus and Mars passing by in the nightly sky, 
without fear that they are on collision course with 
our earth. The Titius-Bode law is an empirical rule, 
which has met a lot of controversy, and has even 
been called an example of fallacious reasoning. To 
this day there is no accepted rational explanation. 
Also, up till recently our own solar system was the 
only solar system known, so the law could not be 
corroborated by looking at other cases. This has 
changed and indeed the recent literature contains 
examples of applications of distance and period 
regularities according to geometric progressions 
[3]. In order to get the distance of Jupiter right, it 
was compelling to rank Jupiter as the sixth planet 
of the solar system, leaving a gap between Mars 
and Jupiter. After the discovery of Uranus in 1781, 
which fits into the series, the search for the missing 
fifth planet in between Mars and Jupiter was on, 
resulting in the discovery of Ceres, the largest 
object in the asteroid belt, in 1801.

Clearly the discovery of Titius and Bode has 
several characteristics that would turn up again 
later when Mendeleev proposed his own table: the 
presence of an integer number sequence, the quest 
for the missing element, and the initial skepticism 
of the scientific community. However, its true 
significance, which accounts for its appearance in 
our portrait gallery, is not so much the rule itself 
but the conviction that the set of the planets forms 
an orderly sequence, which can properly be called 
a ‘system’. This is a conviction that would leave 
its mark in Mendeleev’s discovery, and that we 
continue to celebrate in our lecture rooms whenever 
we compare the atom to a planetary system.

1.2. Mendeleev

Mendeleev’s table was based on empirical 
evidence, collecting similarities between chemical 
elements, in combination with approximate atomic 
weights. After its discovery the table met a lot of 
resistance and was confronted with unexpected 

new challenges, such as the problem of allocating 
the newly discovered lanthanides. The lack of a 
proper theoretical explanation of the periodic rule 
was an obvious weakness of the table, which incited 
critical voices. Mendeleev expressed his belief that 
sooner or later a suitable ‘chemical mechanics’ 
could see the light that would clarify the structure 
of his rule. Yet he could not foresee that such 
mechanics would require a double paradigm shift, 
abandoning the concept of the indivisible atom, 
and overruling Newtonian mechanics. This would 
only be realized in the first quarter of the twentieth 
century with the discovery of the planetary structure 
of the atom as a nucleus surrounded by a cloud of 
electrons, and the proposal of a new completely 
weird mechanics. [4] The quantum mechanical 
treatment of the hydrogen atom for the first time 
provides two numbers that encode the periodic 
system: the principal quantum number n, and the 
orbital quantum number l. The way in which the 
atomic (nl) shells are filled when running through 
the periods was summed up by Madelung in 1936 
in a compact Aufbau rule (Figure 3):

1. Atomic shells are filled in increasing order 
of the sum n+l. 

2. For a given value of this sum, the filling is 
in order of increasing n.

Already in 1930, six years before Madelung, 
the French engineer, entomologist, and inventor, 
Charles Janet had come to the same conclusion, 
and reordered the periodic table in the logical 
form of the so-called ‘left-step’ table. [5] He 
published his results in the obscure Bulletin de la 
Société Académique de l’Oise, and his discovery 
remained largely unnoticed.
As with the periodic system itself, the reception 
of Madelung’s rule divided the community in 
sceptics and believers. The sceptics point out 
that the Madelung rule works only partially, has 
many exceptions, and thus will defy all attempts 
to explain it. The spokesman for the sceptics 
is Eugen Schwarz, who claims that we should 
abandon the Madelung rule altogether. When 
discussing extensions of the periodic table up 
to Z=172, Pekka Pyykko notices: ‘It is almost 
disappointing that the simple (n+l , n) ‘Madelung 
rule’ still seems to hold’ [6].
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In the camp of the believers probability 
considerations are invoked to claim that in spite of 
exceptions a fortuitous coincidence is ruled out. 
The regular numerical periodicity, expressed by the 
rule, must point to a hidden order, which is awaiting 
discovery. As for the theoretical underpinning of 
the Madelung rule, computational chemistry can 
very well provide a rigorous quantum-mechanical 
description of any atom, and predict properties 
such as spectra with an accuracy even beyond 
experimental resolution. The question however 
is to set up a general theory. This challenge was 
formulated by Löwdin in 1969, at the occasion of 
the centenary of Mendeleev’s table:

It would certainly be worthwhile to study the 
(n+l , n) rule of Madelung from first principles, 
i.e. on the basis of the many-electron Schrodinger 
equation [7].

Eric Scerri, who in his own words for many 
years was one of the torchbearers for Löwdin’s 
statement, has become more sceptical towards 
the reductionist view in the Löwdin’s challenge, 
which ultimately prunes the hallmark of chemistry 
to an exercise in theoretical physics [8].

In Section 3, we will return to Löwdin’s challenge, 
but before this we have to make the acquaintance 
of the final portrait of Murray Gell-Mann, who 
is often referred to as the Mendeleev of the 
twentieth century.

1.3. Murray Gell-Mann

In the early nineteen sixties, the introduction of 
particle accelerators had yielded a plethora of 
so-called elementary particles, which could be 
grouped in families corresponding to their masses 
and transformations. Gell-Mann discovered that 
families could be identified and structured with the 
help of an abstract mathematical theory known as 
the theory of Lie groups. In Figure 4 we show one 
of the diagrams which Gell-Mann used to classify 
the baryons with rest masses between 930 to 1320 
MeV/c2. The technical name for this diagram is 
a  Cartan-Weyl root diagram for a representation 
of the special unitary group in three dimensions, 
SU(3).  We will explain these concepts shortly in 
Section 2. For now, we note that the appearance 
of the abstract SU(3) symmetry inspired Gell-
Mann to the hypothesis that hadron matter had a 
composite nature and consists of truly elementary 
particles, which he called the quarks. The 
elementary basic vector was composed of three 
quark states: up, down and strange. The baryons 
are products of three quarks.

The diagram provides room for the eight hadrons 
in the given energy range. They include the 
proton and the neutron, three sigma (S) particles 
and two xi (X) particles, and one lambda (L) 
particle. Each particle is characterized by 
several quantum characteristics, including 
charge. While the proton and neutron differ by 

Figure 3. Filling order of the atomic orbitals, from Hydrogen (1s1) up to Oganesson (7p6)

Erwin Madelung
(1881-1972)
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charge, they have almost the same mass. Already 
in 1932 Heisenberg noticed that the proton and 
neutron are congeners, as if they were the two 
components of a degenerate quantum state, such 
as the up and down components of a spin state. 
He appropriately introduced the term isospin 
to express the common nature of the nucleons, 
which were subsequently identified as the - ½  
and + ½ components of an isospin doublet [9]. 
The litmus test for important classifications 
is that they also lead to the prediction of new 
elements to fill the gaps that are left open by the 
classification. This was the case for Titius-Bode 
and Mendeleev, but equally so for Gell-Mann 
who could predict the existence of a missing 
member in the hadron family, and estimate an 
approximate energy. This time the search for 
this particle became at once the number one on 
the agenda of particle physicists. Accelerators 
were swiftly tuned in on the predicted energy 

range. It was not for long till the Omega minus 
particle was detected. This earned Gell-Mann 
rightfully the title of the Mendeleev of the 
twentieth century.

However, as compared to Mendeleev and his 
predecessors the classification of the hadrons is 
marked by an essential difference. In the case of 
the quarks, the diagrams which Gell-Mann and 
his contemporaries developed, present a more 
mature form of classification, as they combine 
the empirical evidence with the powerful 
mathematical tool of symmetry groups. The 
origins of this tool go back to the nineteenth 
century, thus predating quantum mechanics. 
In the next section we highlight the legacies of 
nineteenth century mathematicians, who provided 
the foundations for the use of symmetry in atomic 
and subatomic classifications.

Figure 4. Cartan-Weyl root diagram for the baryon octet. Q , S, Y, and T
3
 stand for Charge, Strangeness, Hypercharge, 

an Isospin component; p+ and n0 are the familiar proton and neutron, forming an isospin doublet. One further notices an 
isospin triplet (S-, S0, S+) and another doublet at S=-2 (X- and X0). The L0-particle in the center is an isospin singlet.



CHIMIE NOUVELLE N° 134 - août 20206

2. The legacies

Group theory was created in a flash of genius 
by Évariste Galois. Its subsequent application 
to the symmetry of continua is due to Sophus 
Lie. This section is devoted to the legacies of 
these two towering figures of nineteenth century 
mathematics. 

2.1. Évariste Galois

In 1832, when Galois died at the age of 21 in a silly 
duel, the world lost an exceptional mathematician 
and well-known revolutionary. The story is 
known how the night before the duel he collected 
all his work and left this ‘lettre testamentaire’ to 
his friend Auguste Chevalier. For a long time, his 
discoveries would remain a book with seven seals, 
but finally they found their way to the ‘Journal 
de mathématiques pures et appliquées’, founded 
by Joseph Liouville.  Galois’ discovery would 
inspire a whole generation of mathematicians, 
who developed group theory in the second half of 
the nineteenth century.

In his final years at the Collège Louis Le Grand 
in Paris, Galois was enlisted as a student of 
the ‘Mathématiques Spéciales’. Judging from 
the reports by his teachers, he focused all his 
attention exclusively on the study of advanced 
mathematical problems. The problems of the day 
were the algebraic equations, and the possibilities 
to solve higher than quartic equations. Unlike his 
contemporaries however Galois started to play 
with the permutations that could be applied to the 
roots of the equations, and found that they form 
what he called a group. 

He realized that a group is a more powerful 
concept than a set. We can define a set by listing 
its elements. So we decide which elements will 
belong to our set. A group is different. If we decide 
that two elements S and T belong to the group, 
automatically the consecutive actions, symbolized 
by products such as ST,  TS, TST etc.  must also 
be part of the group. Or, in Galois’ mémoire [10]:

Quand nous voudrons grouper des 
substitutions, nous les ferons toutes provenir 
d’une même permutation. Comme il s’agit 

toujours de questions où la disposition 
primitive des lettres n’influe en rien dans les 
groupes que nous considérerons, on devra 
avoir les mêmes substitutions, quelle que soit 
la permutation d’où I’on sera parti.  Donc, si 
dans un pareil groupe on a les substitutions S 
et T, on est sûr d’avoir la substitution ST.

As an example from crystallography: if S is a 
fourfold rotation axis which leaves the crystal 
invariant, and T is a twofold rotation axis, 
perpendicular to S, we at once generate a group 
of exactly eight elements corresponding to the 
dihedral group, D4

. This result can be arrived at 
by a formal combination of powers of S and T, 
using the following simple composition rules:

 
S4

 
= T2

 
= E  (2)

ST
 
= TS3

 
 

where E is the unit operation. Unity is restored 
by applying S four times, or T two times. Such 
rules form the ‘presentation’ of the group. The 
power of the group concept lies in the fact that 
the set constructs itself from the presentation, 
and that the result is consistent with the 
composition rule. By mid-nineteenth hundred 
the group concept got a rigorous definition and 
opened up a whole new branch of mathematics, 
focusing not only on the internal structure of 
groups, but also on its connection with geometry 
and topology. Here the work of Sophus Lie is of 
paramount importance.

2.2. Sophus Lie

The Norwegian mathematician Sophus Lie 
developed group theory in a direction which would 
be of primordial significance to twentieth century 
physics. As students Sophus Lie and the German 
mathematician Felix Klein spent the spring of 1870 
together in Paris where they were introduced to the 
French school of analysis. Especially the work of 
Camille Jordan on substitution groups attracted 
their interest and would have a lasting influence on 
their careers. In a foreword to his later work on the 
icosahedron Felix Klein would recall that the two 
friends decided to split the topic between them. 
Lie would take the subject of  continuous groups, 
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which Klein thought of as the more difficult one, 
while Klein himself would focus on discrete 
groups [11].

Während   ich   selbst   in   erster   Linie   Grup-
pen discreter  Operationen  ins  Auge  fasste  
und  also  insbesondere  zur  Untersuchung   
der  regularen   Körper   und   ihrer   Bezie-
hung   zur  Gleichungstheorie   gefuhrt   wurde,  
hat  Hr.  Lie  von  vorneherein  die  schwier-
igere Theorie   der   continuirlichen  Transfor-
mationsgruppen   und   somit   der Differential-
gleichungen in Angriff  genommen.

Klein’s research on discrete symmetries would 
eventually occupy a great deal of his famous 
Erlangen Program. Lie’s contributions in turn 
would have a lasting impact on physics. In the 
words of the French mathematician and historian 
of mathematics Jean Dieudonné: 

Lie theory is in the process of becoming the 
most important part of modern mathematics. 
Little by little it became obvious that the 
most unexpected theories form arithmetic to 
quantum physics came to encircle this Lie field 
like a gigantic axis [12].

In view of the crucial role which Lie theory has 
for our subject, we spend here a few instants to 
explain the basics of Lie theory, and its connection 
to quantum mechanics.

2.3. A primer on Lie algebra

Consider the dumbbell shaped 2p
x
 orbital in the 

xy-plane. A right-handed rotation of this function 
around the upright z-axis over an angle a, as 
shown in Figure 5, can be expressed by a matrix 
transformation: 

R̂α x, y( ) = x, y( ) cosα −sinα
sinα cosα

⎛

⎝
⎜

⎞

⎠
⎟

 

For our purpose the orbital functions 2p
x
 and 2p

y
 

may be represented as simple Cartesian vectors 
pointing in the x and y directions, respectively. In 
Eq. 3 we have put them together in a row vector 

as (x,y). As the rotation proceeds, the 2p
x
 orbital 

transforms into 2p
x
’. The formula in Eq. 3 then 

describes the projection of the x’ vector on the 
original x,y basis: the x-component decreases as 
cos a, while the y-component is growing in as sin 
a. Similarly, the 2p

y
 orbital is moving away from 

the y-axis. The y component now decreases as cos 
a. As it approaches the x-axis the x-component 
gains weight as - sin a. A right-handed rotation 
of the 2p

y
 orbital over an angle of 90 degrees will 

turn it into -2p
x
.

Since space is isotropic, the rotation angle is 
a continuous variable. It is thus sufficient to 
consider only a tiny rotation over an angle da, 
since every finite rotation can be constructed from 
this starting point using the standard technique of 
the Taylor expansion. The matrix describing this 
infinitesimal rotation is simply obtained from 
the expression in Eq. 3 by taking the limit for a 
becoming infinitesimally small.

lim
α→ 0

R̂
α
x, y( ) = x, y( ) 1 −dα

dα 1

⎛

⎝
⎜

⎞

⎠
⎟= x, y( ) I+Xdα( )

with: I = 1 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟  ,  X = 0 −1

+1 0

⎛

⎝
⎜

⎞

⎠
⎟

As this equation shows, the resulting rotation 
matrix approaches the sum of the unit matrix 

 
(3)

Figure 5. A right-handed rotation over an angle a turns the 2px orbital 
function into the dashed function, 2px’

(4)
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I and a small increment Xda, where X is an 
antisymmetric matrix. With this result we can now 
introduce the derivative of the rotation operator, 
which we will represent as the X operator:

dR̂α
dα

= lim
α→0

R̂α − R̂0
dα

≡ X̂

This operator is the backbone of Lie’s algebra. 
Combining Eqs. 4 and 5 shows that the action of 
the X operator in function space is represented by 
the matrix X.

X̂ (x, y) = (x, y)X  

The key question is now: what is the functional 
form of the X operator? To obtain the answer, the 
right-hand side of Eq. 6 should also be made to 
terminate on (x,y), so that whatever is preceding 
it must be identified as the operator itself. This 
can easily be achieved by realizing that the unit 
matrix is obtained by taking the product of the 
partial derivative operators in a column, and the 
(x,y)-row vector.

δ
δx

δ
δ y

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
(x, y) = 1 0

0 1

⎛

⎝
⎜

⎞

⎠
⎟= I

Adding this expression to the right of Eq. 6 yields:

X̂ (x, y) = (x, y)X = (x, y)X
δ
δx

δ
δ y

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
(x, y)

The operator function is then identified as the 
expression which precedes (x,y) in the right-hand 
side of Eq. 8:

X̂ = (x, y)X
δ
δx

δ
δ y

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
= y δ

δx
− x δ

δ y

This is the famous Lie operator for the rotation 
in the x,y plane. There is a direct link between 

this operator and quantum mechanics. Indeed, in 
quantum mechanics, as in classical mechanics, 
a key role is played by angular momenta. The 
angular momentum for a rotatory movement 
around the z-axis is given by:

L̂z = xpy − ypx  

Here p
x
 and p

y
  denote the components of the 

linear momentum. We now switch to quantum 
mechanics: in the Schrödinger representation of 
the quantum formalism the momentum operator 
is defined as: 

px =
!

i
δ
δx

,   py =
!

i
δ
δ y

 
  

Substituting these operator forms in the 
expression for the angular momentum in Eq. 8 
then yields:

L̂z =
!

i
x δ
δ y

− y δ
δx

⎛

⎝
⎜

⎞

⎠
⎟= i!X̂  

  

It is at once clear that the Lie operator for a 
rotation in the plane coincides with the angular 
momentum operator of quantum mechanics, 
except for the constant factor iħ. This can be 
expressed in a lapidary way as: Quantum 
mechanics is Group Theory multiplied by the 
imaginary unit ánd by Planck’s constant. Both 
factors are essential to build the bridge that 
connects abstract mathematics to real physics: 
the imaginary makes sure that the outcome of our 
measurements are real quantities, and Planck’s 
constant reminds us that while mathematics 
does not know units, measurements never yield 
absolute numbers.
The results can now easily be generalized to 
rotations in three dimensions, and in this way we 
obtain a set of three Lie operators which describe 
the rotations in three perpendicular Cartesian 
planes. The corresponding Lie group is the 
special orthogonal group in three dimensions, 
denoted as SO(3).

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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L̂x =
!

i
y δ
δ z

− z δ
δ y

⎛

⎝
⎜

⎞

⎠
⎟

L̂y =
!

i
z δ
δx

− x δ
δ z

⎛

⎝
⎜

⎞

⎠
⎟

L̂z =
!

i
x δ
δ y

− y δ
δx

⎛

⎝
⎜

⎞

⎠
⎟

   

The composition rule for Lie operators is not an 
ordinary product but a commutator. This is denoted 
by square brackets. As an example the ‘product’ of 
the x and y components is worked out as follows:

L̂x , L̂y⎡
⎣

⎤
⎦= L̂x L̂y − L̂y L̂x = i!L̂z  

  
Choosing the z-component of the angular 
momentum as the center of this algebra, we 
can form linear combinations of the L

x
 and L

y
 

components which are eigenfunctions of L
z
, with 

eigenvalues +/- ħ.

L̂
+
= L̂x + iL̂y      L̂z , L̂+⎡

⎣
⎤
⎦= +!L̂+

L̂
−
= L̂x − iL̂y      L̂z , L̂−⎡

⎣
⎤
⎦= −!L̂−

                          L̂z , L̂z⎡
⎣

⎤
⎦= 0

This result can be represented in a one-
dimensional diagram, consisting of a metric 
space with three points, at   -1, 0, and +1 (in units 
of ħ), corresponding to the eigenvalues of the 
operators under L

z
.

Orbitals too can be represented in such a diagram. 
As an example the set of the five d-orbitals appears 
as the row of five points indicated below. When 
acting on these orbitals the L- ,L+ operators will 
act as ladder operators: they lower, increase the 
z-component of the angular momentum by one unit.

The resulting diagram with its shift operators 
that allow to jump between its lattice points is the 
Cartan-Weyl diagram for the spherical symmetry 
group. This is the kind of diagram that Gell-
Mann used to represent the baryons in Figure 
4. In that case the Lie group concerned was the 
special unitary group in three dimensions, SU(3). 
This group is more involved than the SO(3) 
group, since it is generated by not less than eight 
differential operators. It is represented by a two-
dimensional Cartan-Weyl diagram with the shape 
of an hexagon.

Equipped with the mathematical tools that were 
created by Sophus Lie, and inspired by the success 
of Gell-Mann’s approach, we can now launch the 
search for a covering Lie group that would encode 
the structure of the Periodic System.

3. The periodic chess board

3.1. APA versus EPA

To meet the Löwdin challenge two lines of 
attack have been proposed: the Atomic Physics 
Approach (APA) and the Elementary Particle 
Approach (EPA).

In the APA, the aim is to design a general 
potential energy function that incorporates 
the physics of the multi-electronic atom into 
an effective one-particle Hamiltonian and to 
solve the corresponding Schrödinger equation. 
The proponent of this approach was Valentin 
Ostrovsky, who elaborated the Maxwell fish-eye 
potential. The resulting one-particle potential 
equation was inserted in a Sturmian-type wave 
equation. A discussion of this work and a further 
treatment is provided in the recent literature 
[4,13].

The EPA approach in contrast is inspired by Gell-
Mann’s work and calls for an elementary particle 
corresponding to a symmetry group, the modes 
of which present the chemical elements. This is 
the approach which we have used in our recent 
monograph [1], and that will be pursued in this 
section.

(13)

(14)

(15)
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Before starting our exploration, it is well to 
remind us of the possible pitfalls and traps that 
are laid out on our journey. Ostrovsky sends us an 
advance warning in a vehement attack on the EPA 
approach [14].

It seems that the abstract group-theoretical approach, 
as currently developed, amounts to a translation of 
empirical information on the periodicity pattern for 
atoms in a specialized mathematical language – but 
no other output is produced. Probably this approach 
would have explanatory power only within a 
community which speaks this language.

While we maintain that group theory offers a 
most powerful tool to unveil Nature’s secrets, 
we should not be blind for the danger of purely 
formal approaches that may have an aesthetic 
appeal but lack real content.

It is thus of crucial importance to clearly state 
the requirements that an EPA approach of the 
elements should obey:

The proposed symmetry should include 
the spherical symmetry of the atom as a 
subgroup

The proposed symmetry should have the 
SO(4,2) non-invariance group of the 
hydrogen atom as its covering group

It should recognize the parity of n+l as a 
quantum characteristic which explains the 
period doubling, as shown in the left-step 
table

The approach should offer an insight into 
the Madelung rule

3.2. SO(4,2) group

Our first task will be to explain what is meant by 
the  SO(4,2) non-invariance symmetry group, 
which covers the full hydrogen spectrum. SO(n) 
stands for special orthogonal groups, these are Lie 
groups that describe rotations about a fixed point 
in n-dimensional space. So SO(2) is the rotational 
symmetry of a circle. SO(3) collects the points at 
a given radius of a fixed origin, in other words it 
is the symmetry of a sphere. In coordinate space 
SO(3) thus conserves the norm of a vector:

x2
 
+ y2

 
+ z2 = a    

where a is a constant.

This is the symmetry group that generates the 
spherical harmonics, characterized by the orbital 
quantum number l. Obviously, atoms have spherical 
symmetry and thus exhibit harmonic states. But, 
in the case of hydrogen, its spectrum reveals the 
presence of a deeper symmetry. Indeed the state 
energies of hydrogen only depend on the principal 
quantum number n, and not on l. So 2s and 2p share 
the same energy, in spite of their different shapes. The 
hidden symmetry group that explains this unexpected 
degeneracy is the hyperspherical symmetry group 
SO(4), describing rotations in 4 dimensions. This 
group was identified by Fock in 1935. However, 
already in 1926, Pauli had derived an operator 
algebra that generates the hydrogen spectrum. [15] 
While deriving his result Pauli in fact unknowingly 
reconstructed the Lie group SO(4) of the hypersphere. 
Years later Gell-Mann would accomplish the same 
remarkable exploit by reinventing SU(3) symmetry 
to tackle his hadronic conundrum. 

The three-dimensional sections of a hypersphere 
are perfect spheres with varying radii, exactly as the 
two-dimensional sections of a sphere are circles with 
varying radius. The hyperspherical symmetry group 
is based on six rotation operators: the three angular 
momentum operators, and three more operators 
corresponding to the Cartesian components of the 
Runge-Lenz vector. The latter vector is less well 
known than the angular momentum vector, but an 
equally important kinematic quantity. In fact, it 
also plays a determining role in the classical central 
field problem. Consider the Kepler orbit of a planet 
in the gravitational field of the sun. The planet 
describes an ellipse with the sun in a focus point. 
The angular momentum is a vector perpendicular 
to the orbital plane. Its conservation implies the 
invariance of the orbital plane. The Runge-Lenz 
vector is a vector oriented along the major axis 
of the ellipse. Its conservation implies that the 
orientation of the ellipse in the orbital plane is 
invariant as well. It thus prevents the precession of 
the planetary orbit.  As Pauli showed, the quantum-
mechanical expression of these invariances leads 
directly to the hydrogen spectrum.

(16)
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If in Eq. 16 we replace z by iz, the conserved 
quantity becomes:

x2
 
+ y2

 
- z2 = a    

The result of this transformation is to open up 
the sphere at its poles to form an open ended 
hyperboloid, as shown in Figure 6. Its horizontal 
cross sections are circles, while its vertical 
sections are hyperboles. The x and y coordinates 
thus continue to be ‘space-like’ while the z 
coordinate runs from -∞ to +∞, and is said to 
be ‘time-like’. The orthogonal group which 
describes this surface is denoted as SO(2,1). 

This brings us finally to the group SO(4,2). The 
notation indicates that it contains the four space-
like coordinates of the SO(4) group, and in addition 
two time-like degrees of freedom. These additional 
degrees of freedom acts as rescaling factors, which 
change the metric of the atomic space, and as a 
results compress the spectrum of bound energy 
states of hydrogen, which covers a range of 13.6 
eV, to a single infinitely degenerate level. The 
operators of SO(4,2) allow to travel freely in this 
space and thus move from one state to another.

The Cartan-Weyl diagram of SO(4,2) is 
now a three-dimensional polyhedron, viz. a 
cuboctahedron. It thus has a richer topology than 
the two-dimensional hexagon of Gell-Mann’s 
space. For our purposes we can project this 
diagram in a plane, where it assumes the format 

of a periodic chess board, with n rows and l 
columns, as shown in Figure 7.

Each entry on this board corresponds to the set 
of 2l+1 orbitals with a given principal quantum 
number n and orbital quantum number l. As an 
example in the 2p slot of the chess board are 
thus located the three orbitals 2p

x
, 2p

y
, and 2p

z
. 

The covering Lie group of hydrogen offers an 
unexpected new perspective on the periodic 
system: it appears as the projection of a Cartan-
Weyl diagram of SO(4,2). As the pieces move over 
this chess board, the operators of our covering 
group jump from state to state. To each of the 

Figure 7. Representation of the periodic system on a chess board, 
where each entry contains the entire set of orbitals of nl type.

Figure 6. Lie groups of the circle, SO(2), a sphere, SO(3), and a hyperboloid, SO(2,1).

(17)
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chess pieces correspond particular symmetries. 
The royal pieces King and Queen perform all 
possible moves and thus represent the parent 
group itself. As indicated in Figure 7 the rooks 
move vertically, changing the principal quantum 
number, or horizontally changing the orbital 
quantum number. To these moves correspond the 
subgroups SO(2,1) and SO(4) respectively.

3.3. The Madelung rule

Now we have to define precisely what is 
understood by the symmetry of the Madelung 
rule. This can be achieved with the help of the 
correlation diagram in Figure 8. The vertical axis 
represents a linearized energy scale, which is 
simply proportional to the principal and orbital 
quantum numbers. The coordinates of a given 
(n,l) point are then read off as : 

E n,l( )  =  n +  xl

where x is varied in the diagram from -1 to +1. 
The centre of the diagram, with x=0, represents 
the hydrogen levels, determined uniquely by 
the principal quantum number. On the right is 
depicted the limiting case with x=+1, where the 
energy is determined by the plain sum n+l. This 
limit corresponds to Madelung’s first rule, which 
collects all levels in multiplets, characterized by 
the same sum value. Madelung’s second rule tells 
us that this is an ideal limiting case, whereas the 
actual periodic system is situated in between the 
hydrogen and Madelung limits, but close to x=+1. 

As was argued before degeneracies are hallmarks 
of underlying symmetry groups. Clearly the 
degeneracy in the centre of the diagram reflects 
the SO(4) symmetry of hydrogen. Likewise we 
define the symmetry group of the periodic system 
as the group that is responsible for the degeneracy 
pattern observed at x=+1, which is the ideal case 
predicted by Madelung’s first rule. The second 
rule then represents a breaking of this symmetry. 

(18)

Figure 8. Linearized correlation diagram between the principal and orbital quantum numbers.
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In the EPA approach the Löwdin challenge thus 
boils down to finding the algebra that generates 
Madelung’s first rule.

It is also interesting to examine the opposite 
side of the diagram, with x=-1, where the level 
energy is determined by the difference n-l. This 
quantization represents a kind of anti-Madelung 
sequence, which we have termed the Regge 
sequence, after Tullio Regge (1931-2014) who 
introduced the concept of trajectories in scattering 
theory. Resonances in this theory correspond to 
sequences of hadronic particles, represented by 
the strings on the left of the diagram.

3.4. The chiral bishop

Returning now to the periodic chess board, it is 
observed that the Madelung and Regge multiplets 
correspond to the diagonals on the chess board. 
The pieces that move along these diagonals are 
the bishops. These are the only monochromatic 

pieces on the board, meaning that they are bound 
to either the white or the black squares, where 
they will spend all their life, depending on the 
parity of n+l, as shown in Figure 9.

Vector operators that correspond to the moves of 
the bishop define a Lie algebra, corresponding 
to the SO(3,2) symmetry group, which is a 
subgroup of SO(4,2). By confining the moves to 
diagonal displacements the parent group is thus 
broken. Under SO(3,2) the (n,l) states can only be 
connected to states with the same parity of n+l. 
Under this symmetry lowering the whole chess 
board is split up into a white and a black subboard, 
which are copies of each other. This splitting 
explains straight away the apparent doubling of 
the periodic table under the Madelung rule. 

On the right of  Figure 9 the black and white 
diagonals are displayed separately in tabular form 
according to their Madelung parity. This gives rise 
to the so-called left step table of Charles Jannet, with 

Figure 9. Moves of the bishops on the chess board preserve the sum or difference of the n and l quantum numbers, 
corresponding to Madelung or Regge sequences respectively.
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a strict sequence of row dimensions as: 2, 2, 8, 8, 
18, 18, 32 ... Note that in this table (2s)2, Beryllium, 
is placed under the (1s)2 element, Helium. 

While SO(3,2) provides a quantum characteristic 
for the doubling of the table, it falls short of 
reaching our final goal to find a Lie group that 
matches Madelung’s first rule. To achieve that 
goal, one should construct operators that separate 
Madelung and Regge directions, as shown in 
Figure 10. We call such operators that run only 
either along the Madelung, or along the Regge 
sequences ‘chiral’ bishops.

Now the crux of the problem is that it is simply 
impossible to construct such chiral operators in 
SO(4,2)! If we look at the diagonal operators 
in this group they will always be achiral, i.e. 
they always induce jumps along both diagonals 
simultaneously, as illustrated in Figure 11. 
As the figure further shows, by making linear 

combinations of these achiral operators we can 
choose to proceed upwards (or downwards), but 
it is simply impossible to direct them uniquely 
along the Madelung (or Regge) diagonal.

So the path to a Madelung subgroup within 
SO(4,2) is blocked. The reason is that while 
SO(4,2) contains an operator that yields the value 
of the principal quantum number n, it lacks an 
operator that recognizes the angular quantum 
number l. Instead the angular momentum is 
obtained by acting with the operator L2, which 
has eigenvalue l(l+1). This is not quite the same 
as a direct measure of the value of l. For instance, 
the eigenvalue of the L2 operator is always even, 
so this operator is not able to determine the parity 
of l. To overcome this problem, an additional 
operator is introduced which allows us to access 
the orbital quantum number directly. This operator 
is denoted by Englefield as S (not to be confused 
with the spin operators) [16].

Ŝ nlml = l + 1
2

⎛

⎝
⎜

⎞

⎠
⎟ nlml

Ŝ 2 = L̂2 + 1
4

 

The S operator is outside SO(4,2). The 
commutation of S with the operators of SO(4,2) 
will produce an entirely isomorphic copy, which 
we will denote as the primed algebra SO(4,2)’. 
The combination of these two algebra’s yields a 
group structure which now indeed produces the 
desired chiral bishops, as indicated in Figure 12.

Figure 10. Action of the chiral bishops on the periodic chess board: the 
Madelung operator runs along the solid diagonal (here with n+l=6), the 
Regge operator runs along the dashed diagonal (here with n-l=4)

Figure 11. Combination of achiral diagonal moves yields an achiral result. (Black and white arrows have the same 
magnitude but a different sign. Their sum thus vanishes)

(19)
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The Madelung operators which are obtained in 
this way are again vector operators, and will be 
denoted as M

x
, M

y
, M

z
. In all we obtain now a 

group structure which consists of six operators: 
the three Madelung operators, and the three 
angular momentum operators. The corresponding 
algebra now reads:

L̂i , L̂j⎡
⎣

⎤
⎦= iεijk L̂k

L̂i ,M̂ j
⎡
⎣

⎤
⎦= iεijk M̂ k

M̂ i ,M̂ j
⎡
⎣

⎤
⎦= iεijkς M L̂k

with: i, j,k = x, y, z

 
  

where e
ijk

 is the antisymmetric tensor, i.e. it is +1 
for even permutations of the three labels ijk, and 
-1 for odd permutations. This algebra is entirely 
similar to the SO(4) algebra of hydrogen, except 
for the appearance of an extra factor z

M
 in the 

commutators of the Madelung operators. This 
factor is equal to:

ςM =
n− l − 1

2

l + 1
2

  
 

Because of this factor the resulting algebra is 
non-linear. Indeed to obtain this factor requires 
the extra operators that produce n and l, in other 
words the commutator is not a linear function of 

the L
k
 operator, since the preceding factor is a 

ratio of operators. Otherwise this group has SO(3) 
symmetry as a legal subgroup, thus fulfilling an 
essential requirement. The search for the group-
theoretical expression of Madelung’s first rule 
thus has turned up an unexpected algebraic 
structure, which goes beyond the standard linear 
Lie algebras. In the final section we will reflect on 
the physical meaning of this result.

4. Conclusions

Around the time that Mendeleev was publishing 
his far reaching taxonomy of the chemical 
elements, two young mathematicians, Sophus 
Lie and Felix Klein, met in Paris, and got under 
the spell of a new branch of mathematics: 
group theory. They made plans for the further 
development of Galois’ legacy, but it would still 
take more than half a century before the legacy of 
Évariste Galois and Sophus Lie would show up in 
the physical sciences. A milestone in this respect 
was the demonstration of the hyperspherical 
symmetry of hydrogen by Vladimir Fock in St. 
Petersburg in 1935. Algebra’s were developed and 
applied by theoretical physicists such as Pascual 
Jordan, Paul Dirac, and Eugene Wigner.

A Lie group was also at the centre of Gell-Mann’s 
classification of the elementary particles, which 
made him the Mendeleev of the twentieth century. 

Figure 12. The addition of achiral diagonal moves from the primed and unprimed SO(4,2) yields a chiral result, 
which corresponds to the Madelung operators

(20)

(21)



CHIMIE NOUVELLE N° 134 - août 202016

Since then the question arose if a similar structure 
could be at the basis of Mendeleev’s periodicity 
rule, and what would be its physical implications.

The SO(4) like algebra, which we arrived at in 
the previous section, deviates from the standard 
linear structure. What does this mean? Since its 
structure is entirely isomorphic to Pauli’s and 
Fock’s SO(4) algebra for the hydrogen problem, 
except for the appearance of the z

M
 function, it 

entices a comparison between hydrogen and 
poly-electronic atoms. Both are central field 
problems. In hydrogen the field originates from 
the Coulombic attraction of the nuclear charge, 
and this is expressed by the linear SO(4) algebra. 
In poly-electronic atoms the configuration of the 
outer electron is determined by the combination 
of the nuclear attraction and the repulsion by the 
electron cloud. In the limiting case of Madelung’s 
first rule, the central field quantization replaces 
the principal quantum number by the sum of radial 
and orbital quantum numbers. This is matched 
by the replacement of the linear SO(4) algebra 
by a deformed one. The special structure of this 
algebra implies that space itself is transformed, 
because of the presence of the electronic cloud. 
Such a transformation is a conformal mapping. 
It incorporates the electronic repulsion into the 
structure of atomic space itself, and thus leads 
to an integrated approach of the central field, 
as if it were due to a single pseudo-particle. 
Further advances aim at developing a quantum-
mechanical formalism which incorporates this 
mathematical structure [13].  In the end this 
should lead to the reconciliation between the EPA 
and APA approaches.
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